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Summary
Energy-Regularized Sequential Model Editing on Hyperspheres

Title: Energy-Regularized Sequential Model Editing on Hyperspheres [ arXiv]
In submission: The 14th International Conference on Learning Representations (ICLR 2026)
Score (Nov. 23): 8884; Top 2/551 submissions (Transfer/Meta Learning track)
Authors: Qingyuan Liu*, Jia-Chen Gu*, Yunzhi Yao, Hong Wang, Nanyun Peng
Affiliations: PLUSLab, University of California, Los Angeles

*Equal contributions
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

• Model Editing (Knowledge Editing) aims to refine a pre-trained model by applying one or
more edits, where each edit replaces a factual association (s, r, o) with new knowledge
(s, r, o∗) 1.

1References: [1] Yang, et al. The fall of ROME: understanding the collapse of llms in model editing. EMNLP 2024 [2] Li, et al. Reinforced lifelong editing for language models.
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

To achieve this, locating-and-editing methods have been proposed for effective model updates.
These methods typically follow three steps:

• Step 1: Locating Influential Layers: The first step is to identify the specific FFN layers
that encode the target knowledge using causal tracing2.

2References: [1] Meng, et al. Locating and editing factual associations in GPT. NeurIPS 2022
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

To achieve this, locating-and-editing methods have been proposed for effective model updates.
These methods typically follow three steps:
• Step 1: Locating Influential Layers: The first step is to identify the specific FFN layers

that encode the target knowledge using causal tracing3.

• Clean run: with prompt s + r.
• Corrupted run: obfuscated s randomly.
• Restoration run: restore embedding from

clean run.

3References: [1] Meng, et al. Locating and editing factual associations in GPT. NeurIPS 2022
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

• Step 2: Acquiring the Expected Output: The second step aims to obtain the desired
output of the critical layers identified in Step 1.

Following the key–value theory: the key k, which encodes (s, r), is processed through the
output weightsW l

out out to produce the original value v encoding o.

V = WK
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

• Step 2: Acquiring the Expected Output: The second step aims to obtain the desired
output of the critical layers identified in Step 1.

Following the key–value theory: the key k, which encodes (s, r), is processed through the
output weights W l

out out to produce the original value v encoding o.

V = WK

To perform editing, v is expected to be replaced with a new value v∗ encoding o∗. To this
end, current methods typically use gradient descent on ∆W , maximizing the probability
that the model outputs the word associated with o∗ 4.

V ′ = (W +∆W )K

4References:[1] Meng, et al. Mass-editing memory in a transformer. ICLR 2023
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

• Step 3: Updating W l
out: This step aims to update the parameters W l

out. It includes a
factual set {K1,V1} containing u new associations, while preserving the set {K0,V0}
containing n original associations. Specifically,

K0 = [k1 k2 · · · kn ], V0 = [v1 v2 · · · vn ],

K1 = [kn+1 kn+2 · · · kn+u ], V1 = [v∗
n+1 v∗

n+2 · · · v∗
n+u ]

(1)
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Preliminaries (skippable)
Model Editing (Knowledge Editing)

• Step 3: Updating W l
out: This step aims to update the parameters W l

out. It includes a
factual set {K1,V1} containing u new associations, while preserving the set {K0,V0}
containing n original associations. Specifically,

K0 = [k1 k2 · · · kn ], V0 = [v1 v2 · · · vn ],

K1 = [kn+1 kn+2 · · · kn+u ], V1 = [v∗
n+1 v∗

n+2 · · · v∗
n+u ]

(2)

Based on these, the objective can be defined as: 5

W̃ l
out ≜ arg min

Ŵ

(
n∑

i=1

∥∥Ŵki − vi

∥∥2 + n+u∑
i=n+1

∥∥Ŵki − v∗
i

∥∥2) . (3)

5References:[1] Meng, et al. Mass-editing memory in a transformer. ICLR 2023
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Challenges in Model Editing

H Lifelong Editing (large-scale sequential edit): How to maintain the efficacy of edit while
preserving the general ability of the edited model?

• Multi-hops Editing (reasoning editing): How to maintain the editing efficacy in related
multi-hop questions?

• Non-structural Knowledge Editing: How to generalize current method in general
knowledge format except for factual association (s, r, o).

• Editing on Emerging Architectures: How can model editing be effectively applied to new
architectures (e.g., multimodal, MoE, or sparse-activated models) where knowledge is
distributed across diverse modules and modalities?
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Challenges in Model Editing
H Lifelong Editing (large-scale sequential edit): How to maintain the efficacy of edit while

preserving the general ability of the edited model?6

6References: [1] Zhang, et al. A Comprehensive Study of Knowledge Editing for Large Language Models. preprint 2023
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Challenges in Model Editing

H Lifelong Editing (large-scale sequential edit): How to maintain the efficacy of edit while
preserving the general ability of the edited model?7

7References: [1] Fang, et al. ALPHAEDIT: NULL-SPACE CONSTRAINED KNOWLEDGE EDITING FOR LANGUAGE MODELS. ICLR 2025
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From Angular Perspective

• Network generalization by alleviating redundancy through angular diversification.8

min
W

L(W) s.t. 1 ≤ i < j ≤ m,

∣∣∣∣ wi ·wj

∥wi∥2 ∥wj∥2

∣∣∣∣ ≤ τ

• Why Does Orthogonal Transformation Make Sense?

8References:[1] Xie, D. et al. Learning latent space models with angular constraints. In ICML, 2017. [2] Cogswell, Ahmed. et al. Reducing overfitting in deep networks by
decorrelating representations. In ICLR, 2016. [3] Qiu, L. et al. Controlling Text-to-Image Diffusion by Orthogonal Finetuning. NeurIPS, 2023.
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From Angular Perspective

Research Questions

• 1. Does knowledge editing affect the angular diversity of edited weights?

• 2. Is there any correlation between angular diversity and {editing, general
task} performance?

• 3. If Yes, is it possible to design an angular diversity-based regularization
method to improve knowledge editing?
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From Angular Perspective

Before Introducing Correlation...
Mathematical Definition9:

• Hyperspherical Energy (HE) is a metric that quantifies the uniformity of vector
distributions on a hypersphere.

• Given a normalized metric X (to only focus on angular aspect), the HE could be calculated
by:

HE(X) =
∑
i ̸=j

(
∥x̂i − x̂j∥2 + ϵ

)−s
=
∑
i ̸=j

(2(1− cos θij) + ϵ)
−s

9References:[1] Liu, L. et al. Learning Towards Minimum Hyperspherical Energy. NeurIPS, 2020.
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From Angular Perspective

Before Introducing Correlation...
Mathematical Definition:

• Hyperspherical Energy (HE) quantifies the uniformity of vector distributions on a
hypersphere.

• Given a normalized metric X (focusing on angular aspect), the HE can be calculated by:

HE(X) =
∑
i ̸=j

(
∥x̂i − x̂j∥2 + ϵ

)−s
=
∑
i ̸=j

(
2
(
1− cos θij

)
+ ϵ
)−s

When vectors are close to orthogonal (around 90◦ apart), their cosine similarity
diminishes toward 0, so this term approaches 1 and the overall HE decreases.

• High HSE → Vectors are clustered and non-uniformly distributed.
• Low HSE → Vectors are well-dispersed and uniformly distributed.
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From Angular Perspective

Research Questions

• 2. Does knowledge editing affect the angular diversity of edited weights?

• 3. Is there any correlation between angular diversity and {editing, general
task} performance?
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From Angular Perspective

• Observation 1: Collapse in sequential editing is closely tied to sharp fluctuations in
HE.

• 5,000 sequential edits
with batch size of 100
on LLaMA3-8B.
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From Angular Perspective

• Observation 2: Advanced editing methods suppress HE fluctuations effectively.

• The correlation between
changes in HE (HE) and
editing performance (Acc.),
where each point denotes the
difference between two
consecutive batch edits.
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From Angular Perspective

• Theoretically: |∆HE| is the lower-bound constraint for ∆V (disruption caused by
editing).

For ∆V = (W +∆W)K − WK
= WK +∆WK − WK
= V +∆V − V
= ∆V

which is the variation on the original knowledge (∆V)
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From Angular Perspective

• Theoretically: |∆HE| is the lower-bound constraint for ∆V (disruption caused by
editing).

For ∆V = (W +∆W)K − WK
= WK +∆WK − WK
= V +∆V − V
= ∆V

Theorem 1 (Lower Bound on Output Perturbation).10 Under the assumptions of orthonormal inputs and small perturbations, the
output perturbation ∆V is lower-bounded by squared change in HE:

|∆V| ≥
(
∆HE
K

)2

, K = 4

 p∑
k=1

∑
j ̸=k

∥wk − wj∥−3

2


1/2

where K is a constant dependent on the original weight matrix geometry.

10 [1] NOTE: Detailed proof in our paper Section 3/Appendix in ENERGY-REGULARIZED SEQUENTIAL MODEL EDITING ON HYPERSPHERES:
https://arxiv.org/abs/2510.01172
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From Angular Perspective

Research Questions

• 3. If Yes, is it possible to design an angular diversity-based regularization
method to improve knowledge editing?
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From Angular Perspective
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SPHERE

• We introduce SPHERE (Sparse Projection for Hyperspherical Energy Regularized Editing)
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SPHERE

• 1. Principal Space Estimation: Estimate the principal space of W via Rayleigh Quotient
optimization.

v = arg max
∥v̂∥=1

(
1
n∥Wv̂∥2

)
= arg max

∥v̂∥=1

(
1
n v̂⊤(W⊤W)v̂

)
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SPHERE

• 1. Principal Space Estimation: Estimate the principal space of W via Rayleigh Quotient
optimization.

v = arg max
∥v̂∥=1

(
1
n∥Wv̂∥2

)
= arg max

∥v̂∥=1

(
1
n v̂⊤(W⊤W)v̂

)
According to the Rayleigh Quotient theory:

Key Insight
The maximum value of Proj(v) is the largest eigenvalue of 1

n
A⊤A, and the corresponding direction v is

the principal eigenvector.

Then we can construct the principal subspace matrix based on the top-r eigenvectors of 1
n

A⊤A:

U = [ vd−r+1, . . . , vd ] ∈ Rd×r
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SPHERE

• 2. Sparse Space Definition:

P⊥ = I − αUU⊤ ∈ Rd×d

• 3. Sparse Space Definition:11

Ŵ = W +∆Wproj = W +∆WP⊥

11References: [1] we also provide a mathematical proof that SPHERE suppresses the HE, ensuring bounded variations in the hidden representations ∆V : see Appendix C.2 in our
paper: https://arxiv.org/abs/2510.01172
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Analysis of SPHERE

Research Questions
• RQ1: How does SPHERE perform on sequential editing compared to baseline methods?

• RQ2: Can SPHERE effectively preserve the hyperspherical uniformity of edited weights?

• RQ3: How does SPHERE-edited LLMs perform on general ability evaluations?

• RQ4: Can baseline methods be significantly improved with plug-and-play SPHERE?
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Analysis of SPHERE

• RQ1: How does SPHERE perform on sequential editing tasks compared to baseline
methods?

• 15,000 edits on LLaMA3
(8B), 5,000 edits on Qwen2.5
(7B).
• SPHERE achieves substantial
gains in both Efficacy and
Generalization, with average
improvements of 24.19% and
16.02%, respectively, over the
best baseline.
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Analysis of SPHERE

• RQ2: Can SPHERE effectively preserve the hyperspherical uniformity of edited weights?

• SPHERE effectively preserves
hyperspherical uniformity after
editing, as the cosine similarity
among weight neurons remains
close to the original
distribution, thereby avoiding
directional collapse.
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Analysis of SPHERE

• RQ2: Can SPHERE effectively preserve the hyperspherical uniformity of edited weights?

• The pre- and post-edited
weights exhibit nearly
overlapping distributions,
indicating that SPHERE prevents
significant shifts in weights and
maintains consistency.
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Analysis of SPHERE

• RQ3: How does SPHERE-edited LLMs perform on general ability evaluations?

• Four representative tasks were adopted following RECT12, including Reasoning on
GSM8K, Natural Language Inference (NLI) on RTE, Open-domain QA on Natural
Questions, and Closed-domain QA on BoolQ.

• SPHERE effectively preserves the general abilities of post-edited LLMs even under
extensive editing, maintaining the original model performance across all metrics after 15k
edits.

12References:[1] Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue
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Analysis of SPHERE

• RQ4: Can baseline methods be significantly improved with plug-and-play SPHERE?

• On average, the optimized
baselines achieve relative
improvements of 49.05%,
42.64%, and 24.44% in
Efficacy, Generalization, and
Specificity, respectively after
adding a single line of code
from SPHERE (i.e., sparse
space projection).
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Analysis of SPHERE
• RQ4: Can baseline methods be significantly improved with plug-and-play SPHERE?

• The baselines enhanced with
the SPHERE projection also
demonstrate significantly better
robustness in general abilities.
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Summary
Causal Adjacency Learning for Spatiotemporal Prediction Over Graphs

Title: Causal Adjacency Learning for Spatiotemporal Prediction Over Graphs [ arXiv]
Accepted: 27th IEEE International Conference on Intelligent Transportation Systems (ITSC
2024)
Authors: Zhaobin Mo*, Qingyuan Liu*, Baohua Yan, Longxiang Zhang, and Xuan Di
Affiliations: DitecT Lab, Columbia University

*Equal contributions
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Spatiotemporal Graph Learning

• Most studies calculate the adjacency matrix by directly memorizing the data, such as
distance- and correlation-based matrices.

• These adjacency matrices ignore potential distribution shifts between training and test data,
leading to the Out-of-Distribution (OOD) generalization problem.

Research Question
Can we find the underlying causal relations in temporal dimension
to enhance the prediction on learned graph?
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Spatiotemporal Graph Learning

• Kernel-based Conditional Independence Test (CIT) —identifies dependencies among
temporal variables via kernel similarity measures.

• Systematic Path Isolation (SyPI)13: filters out spurious or fake relations discovered by
the kernel-based CIT.

13References: [1] Necessary and sufficient conditions for causal feature selection in time series with latent common causes, ICML 2021
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Causal Adjacency Learning

• Key idea: Replace the traditional adjacency matrix with a learned causal adjacency
matrix to address the Out-of-Distribution (OOD) issue.
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Experiment
•

Compared with our distance-, correlation-, and attention- based baseline matrix, the CAL
algorithm has a better performance in predicting the OOD dataset, particularly for long-term
predictions.
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Experiment

• CAL method achieves 14.23%, 15.49%, and 50.27% RMSE improvement in predicting
the next week’s mobility in New York, compared with distance-, correlation-, and
attention- based adjacency matrices, respectively.
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Summary
Balanced Latent Space of Diffusion Models for Counterfactual Generation

Title: Balanced Latent Space of Diffusion Models for Counterfactual Generation [ arXiv]
Accepted: The Thirteenth International Conference on Learning Representations Deep Generative
Model in Machine Learning: Theory, Principle and Efficacy Workshop (ICLR DeLTa 2025)
Authors: Baohua Yan, Qingyuan Liu, Zhaobin Mo, Kangrui Ruan, Xuan Di
Affiliations: DitecT Lab, Columbia University

*Equal contributions
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Motivation

• Goal: To address the Out-of-Distribution (OOD) problems in vision models.

• In the MNIST_Colored dataset, the training set contains digits 0–4 in red and 5–9 in
green, while the test set reverses this color mapping (0–4 in green, 5–9 in red).
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Motivation

• Goal: To address the Out-of-Distribution (OOD) problems in vision models.

• In the MNIST_Colored dataset, the training set contains digits 0–4 in red and 5–9 in
green, while the test set reverses this color mapping (0–4 in green, 5–9 in red).

• Due to the OOD issue, it is challenging to use supervised models effectively. To address
this, we aim to generate counterfactual data e.g., a red "5" or a green "0" to augment
the training set and improve generalization.
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Method

Balanced Latent Space. A latent point xT is equally close to its factual and counterfactual counterparts:

d(xT , x
F
0 ) = d(xT , x

CF
0 ).
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Method

Forward Process Toward Balanced Latent Space

Update Rule:
∆xt = εθ(xt + ζt∇xtpϕ(yCF | xt), t)− εθ(xt, t)

xt+1 = xt + γ1∆xt + γ2z, z ∼ N (0, I)

Intuition:
Guided diffusion step that pushes xt toward the region where p(yF | x) = p(yCF | x) (balanced latent
space).
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Method
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Experiment & Ablation Study
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Experiment & Ablation Study
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Summary
InSPECT: Invariant Spectral Features Preservation of Diffusion Models

Title: InSPECT: Invariant Spectral Features Preservation of Diffusion Models
In submission: to CVPR 2026 Authors: Baohua Yan, Qingyuan Liu, Jennifer Kava, Xuan Di
Affiliations: DitecT Lab, Columbia University
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Motivation

• We find that there exists a frequency component invariant across all classes (CIFAR10
dataset).
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Motivation
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Method

• ϵ ∼ N (0, I), q(xt | x0) = N
(√

ᾱtx0, (1− ᾱt)I
)

• ϵdir ∼ N (µ,Σ), q(x̂t | x̂0) = N
(√

ᾱtx̂0 + (1−
√
ᾱt)µ, (1− ᾱt)Σ

)
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Analysis
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Analysis
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Summary
Turns Out I’m Not Real: Towards Robust Detection of AI-Generated Videos
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Preliminaries
Diffusion Reconstruction Error (DIRE)

What is DIRE? And what is DIREs role in AI-Synthetic Detection?
• Diffusion Reconstruction Error (DIRE) helps distinguish between human-generated and

diffusion-generated content.
• It measures the difference between the input frame and its reconstruction from a

diffusion model:
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Preliminaries
Diffusion Reconstruction Error (DIRE)

• Real video frames are sampled from YouTube, while synthetic (fake) videos come from
SORA by OpenAI.

• The reconstructed frame of a SORA-generated video is visually closer to the input frame,
whereas the real video from YouTube are not (e.g., distorted cat face).
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Dataset
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Method
DIVID: Diffusion-based Video Detection

• The Flow of DIVID

• Given a sequence of video frames, we
first generate the reconstructed
version of each frame using a
diffusion model.

• Compute the DIRE (Diffusion
Reconstruction Error) between each
reconstructed frame and its input,
revealing the reconstruction
discrepancy.

• A CNN+LSTM detector jointly
models RGB frames and DIRE
sequences to classify videos as Real
or Synthetic.
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Experiment & Ablation Study

• DIVID achieves 98.20% average
precision (AP) and has better
detection accuracy, and
outperforms them by 0.94% to
3.52%.

• On three out-domain test sets,
including SORA, Pika, and
Gen-2. DIVID improves the
out-domain average accuracy by
0.69% to 16.1%.
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LAVID: An Agentic LVLM Framework for Diffusion-Generated Video Detection
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Motivation
Agentic LVLM Framework for Diffusion-Generated Video Detection

• Deep Learning based detection frameworks always faced with limitations like transparency,
inability to recognize new artifacts
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LAVID
Agentic LVLM Framework for Diffusion-Generated Video Detection

• We proposed an self-evolving LVLM Framework for Diffusion-Generated Video Detection
with explicit knowledge enhancement.
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LAVID-Benchmark
Agentic LVLM Framework for Diffusion-Generated Video Detection

• We create a new benchmark called VidForensic which features 200 text-to-video prompts and
more than 1.4k high-quality videos, collected or generated from eight generative models.
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Experiment

• Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top
baselines on our benchmark across four SOTA LVLMs, including Llava, Qwen-VL,
Gemini-1.5-pro, GPT-4o.
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Experiment

• Comparison with supervised learning methods and Application on deepfake.
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Directional-Diffusion-Models-via-Fourier-Transform
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On Going Project: The research is expected to be submitted to Nature
Affiliations: VLAA LAB, University of California, Santa Cruz
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Motivation

• Developed large-scale vision foundation models for 3D brain imaging (i.e., T1, MPRAGE,
DWI), trained on 800+ public datasets with 170,000 scans (billion-level slices);
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Vision Tasks

• Vision Tasks
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Language Tasks

• Language Tasks
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Qingyuan Liu
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